
KIT – University of the State of Baden-Wuerttemberg and  

National Research Center of the Helmholtz Association 

Jens Kehne | Marius Hillenbrand 

System Architecture Group, Department of Computer Science 

www.kit.edu 

Microkernel Construction 
I.8 – Interrupts, Exceptions, CPU virtualization 

Lecture Summer Term 2017 

Wednesday 15:45-17:15 R 131, 50.34 (INFO) 



System Architecture Group 

Department of Computer Science 

2 21.06.2017 

L4 Kernel Paradigm 

 Everything the kernel needs to handle in a secure 
manner will either become invisible or be hidden 
behind an abstraction. 

 

Events that are not handled by the kernel itself will 
be posted to user land 

Page faults 

Hardware interrupts 

Exceptions 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

3 21.06.2017 

Event Sources 

From current instruction stream (ɀexceptionsɁ) 
Page fault 

Numeric 

Unaligned data access 

Debug 

Speculation 

External (ɀinterruptsɁ) 
Device interrupts 

Timer interrupt 

Inter-processor interrupt 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

4 21.06.2017 

Event Classes 

Traps / interrupts 

Sensed after an instruction 

Deal with the cause, then continue 

Faults 

Signaled during the execution of the current instruction 

Fix the problem, then retry (or skip) 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

5 21.06.2017 

Event Handling 

1. Program executes happily 

2. Event occurs 

3. Activate event handler 

Save current state 

Switch to privileged mode 

Execute event handler 

4. Fix the problem / handle event 

5. End of event handling 

Restore state 

Switch to previous mode 

Continue interrupted program 

6. Program executes happily again 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

6 21.06.2017 

L4 Kernel Paradigm 

 Everything the kernel needs to handle in a secure 
manner will either become invisible or be hidden 
behind an abstraction. 

 

Events that are not handled by the kernel itself will 
be posted to user land 

Page faults 

Hardware interrupts 

Exceptions 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

7 21.06.2017 

Page Fault IPC 

PF    IPC 

res    IPC 

Pager Application 

map msg 

"PF" msg 

IP 

fault addr 

rwx 

PF-IPC synthesized by the 

kernel, pager’s reply caught by 
the kernel (application is not 

informed/involved) 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

8 21.06.2017 

IPC Map 

receive 

window 

Map item offset 

Configured by 

receiver 

A B 

What about 

page faults? 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

9 21.06.2017 

Page Fault Receive Window 

A 

receive 

window 

Pager 

PF message 

Map item offset, 

specified by pager 

Configured by 

kernel 

Pager can overmap 

entire address 

space. 

 

Liedtke: “The 
SawMill Framework 

for Virtual Memory 

Diversity”  

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

10 21.06.2017 

String Copy 

A B 

copy 

IPC string 

copy 

current 
Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

11 21.06.2017 

String Copy: Sender Page Fault  

A B 

copy 

IPC string 

copy 

Deliver PF 

message to 

sender’s pager 

from the sender. 

A’s 
pager 

current 
Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

12 21.06.2017 

String Copy: Receiver Page Fault 

A B 

copy 

IPC string 

copy 

Deliver PF 

message to 

receiver’s pager 

from the 

receiver. 

B’s 
pager 

current 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

13 21.06.2017 

Dataspaces 

What if we want to receive mappings from more than one 
task? 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

A 

Pager 

PF message 

unmap 

Pager doesn’t 
know what was 

unmapped! 



System Architecture Group 

Department of Computer Science 

14 21.06.2017 

Dataspaces 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

Stack Binary Heap File 

Stack File 

Dataspace Manager 

Client 

Worker 

RM 

2. return(cap) 

3. attach(cap, addr) 

1. open 



System Architecture Group 

Department of Computer Science 

15 21.06.2017 

Dataspaces and Pagefaults 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

Stack Binary Heap File 

Stack File 

Dataspace Manager 

Client 

Worker 

RM 

2. kernel pagefault IPC 

4. PF IPC 

1. memory access 

6. mapping 

7. map(NULL) 



System Architecture Group 

Department of Computer Science 

16 21.06.2017 

Invisible Page Faults 

Kernel handles some page faults internally 

Virtual TCB array – map on demand 

Exclusive 0-filled page on write access 

Shared 0-filled read-only page on read access 

Avoid DoS attack on memory used for TCBs 

Map exclusive 0-filled page on later write 

0 

TCB array 
(virtual) 

Physical 
memory 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

17 21.06.2017 

Lazy Kernel Space Building 

Primary kernel 

page directory A B 

current 

Kernel memory 

Note: The kernel shares page tables, not page directories; 

 implemented by copying page directory entries. 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

18 21.06.2017 

L4 Kernel Paradigm 

 Everything the kernel needs to handle in a secure 
manner will either become invisible or be hidden 
behind an abstraction. 

 

Events that are not handled by the kernel itself will 
be posted to user land 

Page faults 

Hardware interrupts 

Exceptions 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

19 21.06.2017 

Hardware Interrupts 

Kernel hides first-level interrupt logic 

No user messing with interrupt hardware 

Deliver interrupts via IPC 

More portable software 

Kernel interrupt handler 

Translates interrupt into IPC 

Sender: interrupt thread ID 
Represents interrupt request line 

Receiver: attached thread (user interrupt handler) 

Message destination 

A thread needs to ɀattach to an interruptɁ 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

20 21.06.2017 

Interrupt Handling 

 PIC 
0 

7 x 
x 

x 

x 

x 

x 

x 

x 

Kernel 

IRQ owner 

Device driver Device 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

21 21.06.2017 

Interrupt Handling 

 PIC 
0 

7 x 
x 

x 

x 

x 

x 

x 

x 

Kernel 

IRQ owner 

Device driver Device 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

22 21.06.2017 

Interrupt Handling 

 PIC 
0 

7 x 
x 

x 

x 

x 

x 

x 

x 

Kernel 

IRQ owner 

Device driver Device 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

23 21.06.2017 

Interrupt Handling 

 PIC 
0 

7 x 
x 

x 

x 

x 

x 

x 

x 

Kernel 

IRQ owner 

Device driver Device 

request 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

24 21.06.2017 

Interrupt Handling 

 PIC 
0 

7 x 
x 

x 

x 

x 

x 

x 

x 

Kernel 

IRQ owner 

Device driver Device 

call(5) 

 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

25 21.06.2017 

Interrupt Handling 

 PIC 
0 

7 x 
x 

x 

x 

x 

x 

x 

x 

Kernel 

IRQ owner 

Device driver Device 

unmask_irq(5) 

call(5) 

 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

26 21.06.2017 

Interrupt Handling 

 PIC 
0 

7 x 
x 

x 

x 

x 

x 

x 

Kernel 

IRQ owner 

Device driver Device 

call(5) 

 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

27 21.06.2017 

Interrupt Handling 

 PIC 
0 

7 x 
x 

x 

x 

x 

x 

x 

Kernel 

IRQ owner 

Device driver Device 

wait(5) 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

28 21.06.2017 

Interrupt Handling 

 PIC 
0 

7 x 
x 

x 

x 

x 

x 

x 

Kernel 

IRQ owner 

Device driver Device 

wait(5) 

5 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

29 21.06.2017 

Interrupt Handling 

 PIC 
0 

7 x 
x 

x 

x 

x 

x 

x 

Kernel 

IRQ owner 

Device driver Device 

wait(5) 

5 

mask_irq(5) 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

30 21.06.2017 

Interrupt Handling 

 PIC 
0 

7 x 
x 

x 

x 

x 

x 

x 

x 

Kernel 

IRQ owner 

Device driver Device 

wait(5) 

5 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

31 21.06.2017 

Interrupt Handling 

 PIC 
0 

7 x 
x 

x 

x 

x 

x 

x 

x 

Kernel 

IRQ owner 

Device driver Device 

wait(5) 

call 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

32 21.06.2017 

Interrupt Handling 

 PIC 
0 

7 x 
x 

x 

x 

x 

x 

x 

x 

Kernel 

IRQ owner 

Device driver Device 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

33 21.06.2017 

Interrupt Handling 

 PIC 
0 

7 x 
x 

x 

x 

x 

x 

x 

x 

Kernel 

IRQ owner 

Device driver Device 

Handle IRQ 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

34 21.06.2017 

Interrupt Handling 

 PIC 
0 

7 x 
x 

x 

x 

x 

x 

x 

x 

Kernel 

IRQ owner 

Device driver Device 

Handle IRQ 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

35 21.06.2017 

Interrupt Handling 

 PIC 
0 

7 x 
x 

x 

x 

x 

x 

x 

x 

Kernel 

IRQ owner 

Device driver Device 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

36 21.06.2017 

Interrupt Handling 

 PIC 
0 

7 x 
x 

x 

x 

x 

x 

x 

x 

Kernel 

IRQ owner 

Device driver Device 

call(5) 

 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

37 21.06.2017 

Interrupt Handling 

 PIC 
0 

7 x 
x 

x 

x 

x 

x 

x 

x 

Kernel 

IRQ owner 

Device driver Device 

call(5) 

 

unmask_irq(5) 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

38 21.06.2017 

Interrupt Handling 

 PIC 
0 

7 x 
x 

x 

x 

x 

x 

x 

Kernel 

IRQ owner 

Device driver Device 

call(5) 

 

unmask_irq(5) 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

39 21.06.2017 

IPC (Pistachio) vs. Objects (Fiasco.OC) 

Interrupt  

thread 
Application 

call 

Reply & wait 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

Kernel Application 

Invoke 

O

b

j

e

c

t

 

C

a

p

 block 

Wake 



System Architecture Group 

Department of Computer Science 

40 21.06.2017 

Synchronous vs. asynchronous interrupt IPC 

Interrupt  

thread 
Application 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

receive 



System Architecture Group 

Department of Computer Science 

41 21.06.2017 

Synchronous vs. asynchronous interrupt IPC 

Interrupt  

thread 
Application 

“INT x" msg 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

receive 



System Architecture Group 

Department of Computer Science 

42 21.06.2017 

Synchronous vs. asynchronous interrupt IPC 

Interrupt  

thread 
Application 

“INT x" msg 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

running receive 



System Architecture Group 

Department of Computer Science 

43 21.06.2017 

Synchronous vs. asynchronous interrupt IPC 

Interrupt  

thread 
Application 

“INT x" msg 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

running receive 

Int 



System Architecture Group 

Department of Computer Science 

44 21.06.2017 

Synchronous vs. asynchronous interrupt IPC 

Interrupt  

thread 
Application 

“INT x" msg 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

running receive 

Int 

X 



System Architecture Group 

Department of Computer Science 

45 21.06.2017 

Synchronous vs. asynchronous interrupt IPC 

Interrupt  

thread 
Application “ACK” msg 

“INT x" msg 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

running receive X 



System Architecture Group 

Department of Computer Science 

46 21.06.2017 

Synchronous vs. asynchronous interrupt IPC 

Interrupt  

thread 
Application “ACK” msg 

“INT x" msg 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

receive X 



System Architecture Group 

Department of Computer Science 

47 21.06.2017 

Synchronous vs. asynchronous interrupt IPC 

Interrupt  

thread 
Application “ACK” msg 

“INT x" msg 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

receive 

“INT x" msg 



System Architecture Group 

Department of Computer Science 

48 21.06.2017 

Synchronous vs. asynchronous interrupt IPC 

Interrupt  

thread 
Application 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

receive 

0 0 0 0 0 0 0 0 



System Architecture Group 

Department of Computer Science 

49 21.06.2017 

Synchronous vs. asynchronous interrupt IPC 

Interrupt  

thread 
Application 

“INT 0" msg 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

receive 

0 0 0 0 0 0 0 0 



System Architecture Group 

Department of Computer Science 

50 21.06.2017 

Synchronous vs. asynchronous interrupt IPC 

Interrupt  

thread 
Application 

“INT 0" msg 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

receive 

0 0 0 0 0 0 0 0 1 



System Architecture Group 

Department of Computer Science 

51 21.06.2017 

Synchronous vs. asynchronous interrupt IPC 

Interrupt  

thread 
Application 

“INT 0" msg 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

running 

0 0 0 0 0 0 0 0 1 



System Architecture Group 

Department of Computer Science 

52 21.06.2017 

Synchronous vs. asynchronous interrupt IPC 

Interrupt  

thread 
Application 

“INT 0" msg 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

running 

0 0 0 0 0 0 0 0 



System Architecture Group 

Department of Computer Science 

53 21.06.2017 

Synchronous vs. asynchronous interrupt IPC 

Interrupt  

thread 
Application 

“INT 0" msg 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

running 

Int 0 

0 0 0 0 0 0 0 0 



System Architecture Group 

Department of Computer Science 

54 21.06.2017 

Synchronous vs. asynchronous interrupt IPC 

Interrupt  

thread 
Application 

“INT 0" msg 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

running 

“INT 0" msg 

Int 0 

0 0 0 0 0 0 0 0 



System Architecture Group 

Department of Computer Science 

55 21.06.2017 

Synchronous vs. asynchronous interrupt IPC 

Interrupt  

thread 
Application 

“INT 0" msg 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

running 

“INT 0" msg 

0 0 0 0 0 0 0 0 1 



System Architecture Group 

Department of Computer Science 

56 21.06.2017 

Synchronous vs. asynchronous interrupt IPC 

Interrupt  

thread 
Application 

“INT 0" msg 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

running 

“INT 0" msg 

Int 0 

0 0 0 0 0 0 0 0 1 



System Architecture Group 

Department of Computer Science 

57 21.06.2017 

Synchronous vs. asynchronous interrupt IPC 

Interrupt  

thread 
Application 

“INT 0" msg 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

running 

“INT 0" msg 

Int 0 

0 0 0 0 0 0 0 0 1 “INT 0" msg 

Message payload is 

OR’ed to async 

message register 



System Architecture Group 

Department of Computer Science 

58 21.06.2017 

Invisible Interrupts 

Kernel uses some interrupts for itself 

Timer tick – triggers scheduler 

Timer device and interrupt line not available to user 

Remember soon/late/late late lists? 

Inter-processor interrupts (SMP) 

Kernel hides IPI hardware 

Cross-CPU user communication via IPC 

 

Kernel debugger may use interrupts 

Performance counters – profiling 

NMI – last resort debug aid 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

59 21.06.2017 

L4 Kernel Paradigm 

 Everything the kernel needs to handle in a secure 
manner will either become invisible or be hidden 
behind an abstraction. 

 

Events that are not handled by the kernel itself will 
be posted to user land 

Page faults 

Hardware interrupts 

Exceptions 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

60 21.06.2017 

Old Exception Handling Model 

Model 

Create exception frame on user stack 

Restart thread at a predefined exception handler 

Return from exception handler using special 
instruction 

Problems 

Very x86-ish, inconsistent 

Requires a valid user stack 

Poor performance for virtualization 
Too many kernel entries 

Recursive exception handling? 

Safety? 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

61 21.06.2017 

EAX 
SP 
IP 

… 

EAX 
SP 
IP 

… 

Exception 

Handler 
Application 

continue msg 

exception msg 

Kernel modifies register 

contents according to reply 

message 

New Exception Handling Model 

Except.-IPC synthesized by the 
kernel, handler’s reply caught 

by the kernel (application is not 
informed/involved). 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

62 21.06.2017 

Hypervisor VM 

Example: Virtualization 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

63 21.06.2017 

EAX=0x1 
SP=0xba2 
IP=0xf00 

… 

Hypervisor VM 

exception msg 

Example: Virtualization 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

EAX=0x1 
SP=0xba2 
IP=0xf00 

… 



System Architecture Group 

Department of Computer Science 

64 21.06.2017 

EAX=0x1 
SP=0xba2 
IP=0xf00 

… 

Hypervisor VM 

exception msg 

Example: Virtualization 

read(0xf00) 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

rdmsr %ctr0 

EAX=0x1 
SP=0xba2 
IP=0xf00 

… 



System Architecture Group 

Department of Computer Science 

65 21.06.2017 

EAX=0x1 
SP=0xba2 
IP=0xf00 

… 

Hypervisor VM 

exception msg 

Example: Virtualization 

read(0xf00) 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

rdmsr %ctr0 

EAX=0x1 
SP=0xba2 
IP=0xf00 

… 
EAX=0x42 

IP=0xf02 



System Architecture Group 

Department of Computer Science 

66 21.06.2017 

EAX=0x42 
SP=0xba2 
IP=0xf02 

… 

EAX=0x1 
SP=0xba2 
IP=0xf00 

… 

Hypervisor VM 

continue msg 

exception msg 

Example: Virtualization 

read(0xf00) 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

rdmsr %ctr0 

EAX=0x1 
SP=0xba2 
IP=0xf00 

… 
EAX=0x42 

IP=0xf02 



System Architecture Group 

Department of Computer Science 

67 21.06.2017 

Invisible Exceptions 

Kernel handles some exceptions internally 

Coprocessor/FPU virtualization 

Transparent small space extension 

TLB misses with software-loaded TLBs 

 

Kernel debugger handles some exceptions 

Breakpoints 

Single-stepping 

Branch tracing 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

68 21.06.2017 

Review: Processor Multiplexing 

Hardware model 
One thread 
One address space 
Exclusive access to resources (such as FPU) 

Microkernel exports 
Multiple threads 
Multiple address spaces 
Maintain threads’ view of the world 

Threads have exclusive access to resources 

Multiplex abstractions onto existing hardware 
Switch register file contents at thread switch 
Potentially switch MMU state at thread switch 
Switch FPU content etc. at thread switch 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

69 21.06.2017 
Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 

FPU Virtualization 

Strict switching 
Thread switch: 

Store current thread’s FPU state 
Load new thread’s FPU state 
 

Extremely expensive 

IA-32’s full SSE2 state is 512 Bytes 
IA-64’s floating point state is ~1.5 KiB 

May not even be required 

Threads do not always use FPU 

Jens Kehne | Marius Hillenbrand – Microkernel Construction, SS 2013 



System Architecture Group 

Department of Computer Science 

70 21.06.2017 

Lazy FPU Switching 

Lock FPU on thread switch 

Unlock at first use – exception 
handled by kernel 
Unlock FPU 

If fpu_owner != current 

 Save current state to fpu_owner 

 Load new state from current 

 fpu_owner := current 

 

FPU 

finit 

     

 

 

 

      

     

 

 

       

     

 

 

 

Kernel 

current fpu_owner 

locked 

 

 

 

 

          

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

71 21.06.2017 

Lazy FPU Switching 

Lock FPU on thread switch 

Unlock at first use – exception 
handled by kernel 
Unlock FPU 

If fpu_owner != current 

 Save current state to fpu_owner 

 Load new state from current 

 fpu_owner := current 

 

FPU 

finit 

fld 

 

 

 

      

     

 

 

       

     

 

 

 

Kernel 

current fpu_owner 

 

 

 

 

          

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

72 21.06.2017 

Lazy FPU Switching 

Lock FPU on thread switch 

Unlock at first use – exception 
handled by kernel 
Unlock FPU 

If fpu_owner != current 

 Save current state to fpu_owner 

 Load new state from current 

 fpu_owner := current 

 

FPU 

finit 

fld 

 

 

 

      

     

 

 

       

     

 

 

 

Kernel 

current fpu_owner 

locked 

 

 

 

 

          

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

73 21.06.2017 

Lazy FPU Switching 

Lock FPU on thread switch 

Unlock at first use – exception 
handled by kernel 
Unlock FPU 

If fpu_owner != current 

 Save current state to fpu_owner 

 Load new state from current 

 fpu_owner := current 

 

FPU 

finit 

fld 

 

 

 

      

     

 

 

finit 

     

 

 

 

Kernel 

current fpu_owner 

locked 

 

 

 

 

          

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

74 21.06.2017 

Lazy FPU Switching 

Lock FPU on thread switch 

Unlock at first use – exception 
handled by kernel 
Unlock FPU 

If fpu_owner != current 

 Save current state to fpu_owner 

 Load new state from current 

 fpu_owner := current 

 

FPU 

finit 

fld 

 

 

 

      

     

 

 

finit 

     

 

 

 

Kernel 

current fpu_owner 

 

 

 

 

          

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

75 21.06.2017 

Lazy FPU Switching 

Lock FPU on thread switch 

Unlock at first use – exception 
handled by kernel 
Unlock FPU 

If fpu_owner != current 

 Save current state to fpu_owner 

 Load new state from current 

 fpu_owner := current 

 

FPU 

finit 

fld 

 

 

 

      

     

 

 

finit 

fld 

 

 

 

Kernel 

current fpu_owner 

 

 

 

 

          

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

76 21.06.2017 

Lazy FPU Switching 

Lock FPU on thread switch 

Unlock at first use – exception 
handled by kernel 
Unlock FPU 

If fpu_owner != current 

 Save current state to fpu_owner 

 Load new state from current 

 fpu_owner := current 

 

FPU 

finit 

fld 

 

 

 

      

     

 

 

finit 

fld 

 

 

 

Kernel 

current fpu_owner 

locked 

 

 

 

 

pacman() 

 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

77 21.06.2017 

Lazy FPU Switching 

Lock FPU on thread switch 

Unlock at first use – exception 
handled by kernel 
Unlock FPU 

If fpu_owner != current 

 Save current state to fpu_owner 

 Load new state from current 

 fpu_owner := current 

 

FPU 

finit 

fld 

 

 

 

fcos 

     

 

 

finit 

fld 

 

 

 

Kernel 

current fpu_owner 

locked 

 

 

 

 

pacman() 

 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

78 21.06.2017 

Lazy FPU Switching 

Lock FPU on thread switch 

Unlock at first use – exception 
handled by kernel 
Unlock FPU 

If fpu_owner != current 

 Save current state to fpu_owner 

 Load new state from current 

 fpu_owner := current 

 

FPU 

finit 

fld 

 

 

 

fcos 

     

 

 

finit 

fld 

 

 

 

Kernel 

current fpu_owner 

 

 

 

 

pacman() 

 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

79 21.06.2017 

Lazy FPU Switching 

Lock FPU on thread switch 

Unlock at first use – exception 
handled by kernel 
Unlock FPU 

If fpu_owner != current 

 Save current state to fpu_owner 

 Load new state from current 

 fpu_owner := current 

 

FPU 

finit 

fld 

 

 

 

fcos 

     

 

 

finit 

fld 

 

 

 

Kernel 

current fpu_owner 

 

 

 

 

pacman() 

 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

80 21.06.2017 

Lazy FPU Switching 

Lock FPU on thread switch 

Unlock at first use – exception 
handled by kernel 
Unlock FPU 

If fpu_owner != current 

 Save current state to fpu_owner 

 Load new state from current 

 fpu_owner := current 

 

FPU 

finit 

fld 

 

 

 

fcos 

fst 

 

 

 

finit 

fld 

 

 

 

Kernel 

current fpu_owner 

 

 

 

 

pacman() 

 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

81 21.06.2017 

Privileged IA-32 Instructions 

Privileged instructions 

lidt – Load interrupt descriptor table 

rdmsr, wrmsr – Access model-specific registers 

wbinvd – Write back and invalidate caches 

lgdt, lldt, ltr, … 

 

IOPL-sensitive 

cli/sti – Disable/enable interrupts 

in, out, ins, outs – Access I/O address space 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

82 21.06.2017 

IO - Space 

Task A 

IO - Bitmap 

CPU 

in() 

Task B 

IO - Bitmap 

I/O Permission Bitmap 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

83 21.06.2017 

IO - Space 

Task A 

IO - Bitmap 

CPU 

in() 

Task B 

IO - Bitmap 

in()  

I/O Permission Bitmap 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

84 21.06.2017 

L4 I/O Port Access Control – IO Faults 

84 

Software 

Task A 

CPU 

in() 

check  

permission 

proceed… 

exception #GP(0) exception_handler() 

handle_faulting_instruction() 

… 
switch instruction { 

      case <in>: 

      case <out>: 

      /* must be due to  

         IOPL/IOPBM */ 

      do_pagefault_ipc(); 

      return; 

} 

… 

IO-pagefault 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

85 21.06.2017 

L4 I/O Port Access Control – IO Mapping 

Pager 

pagefault 

Thread A 
map(io_fp) 

L4 

• Change Bits in IOPBM 

• Keep track of mapping 

 

port(16) size(6) 0110 

Address not necessarily aligned 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

86 21.06.2017 

Virtualizing the Interrupt Flag 

Interrupt enable flag in EFLAGS 
But user mode cannot modify IF directly 
 

cli/sti cause exception (#GP) 

Analyze faulting instruction 
Flip user’s IF 
Per-thread IF 
 

But … expensive 
Unusable for implementing critical sections 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

87 21.06.2017 

Protected Mode Virtual Interrupts 

Hardware support 
Allows enforcing maximum interrupt latency 
Two new flags in EFLAGS register (VIF, VIP) 

cli/sti in user mode updates Virtual IF 

Less costly – no exception 
Hardware interrupts still subject to real IF 

Deliver interrupts immediately or 
Postpone delivery 

Kernel can set VIP flag 
Indicates pending interrupt 
Next sti will cause #GP 

Kernel can deliver pending interrupts 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

88 21.06.2017 

: USERLAND 

USERLAND 

KERNEL 
 

 

 

 

CPU 

EFLAGS 

V 

IF 

V 

IP 
IF 

cli() 

V 

IF 

Protected Mode Virtual Interrupts 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

89 21.06.2017 

: USERLAND 

USERLAND 

KERNEL 
 

 

 

 

CPU 

EFLAGS 

V 

IF 

V 

IP 
IF 

cli() 

interrupt 

new_handle_interrupt() 

V 

IF 

VIF  

cleared? 

handle_interrupt() 

no 

Protected Mode Virtual Interrupts 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

90 21.06.2017 

: USERLAND 

USERLAND 

KERNEL 
 

 

 

 

CPU 

EFLAGS 

V 

IF 

V 

IP 
IF 

cli() 

interrupt 

new_handle_interrupt() 

V 

IF 

VIF  

cleared? 

mask_and_ack_irq(); 

save_pending_interrupt(); 

set_vip_flag(); 

iret(); 

yes 

Protected Mode Virtual Interrupts 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

91 21.06.2017 

: USERLAND 

USERLAND 

KERNEL 
 

 

 

 

CPU 

EFLAGS 

V 

IF 

V 

IP 
IF 

cli() 

interrupt 

new_handle_interrupt() 

V 

IF 

VIF  

cleared? 

mask_and_ack_irq(); 

save_pending_interrupt(); 

set_vip_flag(); 

iret(); 

sti() 

VIP  

Set ? 

yes 

V 

IP 

V 

IF 

proceed… exception 13 

no yes 

handle_pending_irq() 

Protected Mode Virtual Interrupts 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 



System Architecture Group 

Department of Computer Science 

92 21.06.2017 

Summary 

Most events processed in userspace 

Page faults, interrupts, exceptions 

Handler sends and receives IPC 

IPC invisible to faulting thread 

 

Some events handled by the kernel internally 

Kernel page faults 

Timer interrupt, IPI 

FPU/Interrupt flag virtualization 

Jens Kehne, Marius Hillenbrand – Microkernel Construction, SS 2017 


